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First- and second-order boundary-layer theory are examined in detail for some 
specific flow cases of practical interest. These cases are for flows over blunt 
axisymmetric bodies in hypersonic high-altitude (or low density) flow where 
second-order boundary-layer quantities may become important. These cases 
consist of flow over a hyperboloid and a paraboloid both with free-stream Mach 
number infinity and flow over a sphere at free-stream Mach number 10. The 
method employed in finding the solutions is an implicit finite-difference scheme. 
It is found to exhibit both stability and accuracy in the examples computed. The 
method consists of starting near the stagnation-point of a blunt body and 
marching downstream along the body surface. Several interesting properties of 
the boundary layer are pointed out, such as the nature of some second-order 
boundary-layer quantities far downstream in the flow past a sphere and the effect 
of strong vorticity interaction on the second-order boundary layer in the flow 
past a hyperboloid. In  several of the flow cases, results are compared with other 
theories and experiments. 

1. Introduction 
The problem of low-density high-speed flow over blunt bodies has attracted 

wide attention with many methods of attack being developed. The problem is a 
practical one in that a space vehicle entering the Earth's atmosphere encounters 
a wide range of flow conditions ranging from free molecular flow at very high 
altitudes to continuum flow at low altitudes. The intermediate or transition 
rBgime between free molecular and compressible viscous continuum flow has 
been subdivided into various flow regimes depending on the degree of rarefaction. 
Probstein (1961) and Cheng (1963) discuss these various regimes and methods of 
attack valid within each r6gime. 

We will be concerned here with penetration into the transition regime from the 
continuum end, and furthermore we will concern ourselves only with axisym- 
metric blunt body shapes. In  doing this, we employ the compressible Navier- 
Stokes equations modified with appropriate slip and temperature-jump boundary 
conditions at the body surface. We could then attempt to solve these complete 
Navier-Stokes equations or a simplification to them, as has been done by Cheng 
(1963); however, we will choose an alternate method of approach developed by 
t Now with the Engineering Mechanics Department, Virginia Polytechnic Institute. 
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Van Dyke (1962a). This involves solving first- and second-order boundary-layer 
equations which are found from .the Navier-Stokes equations by an expansion in 
inverse powers of the square root of a Reynolds number. The expansion procedure 
used is the method of inner and outer expansions and results in replacing the 
Navier-Stokes equations by two separate sets of equations, one set which is valid 
in an outer inviscid region, and another set which is valid in an inner viscous 
(boundary-layer) region. We are interested in the regimes where this expansion 
parameter is small but not so small that second-order terms in the parameter are 
negligible. For example, some conditions which would produce the type of flow 
conditions which we are interested in occur a t  an altitude of 300,000 ft. at a 
free-stream Mach number of 5.0. Considering a body of nose radius of 1 ft. under 
these conditions produces a value of the perturbation parameter of about 0-2. 
This value will produce considerable deviation in the flow-field quantities from 
those obtained from the first-order boundary-layer equations. Lenard (1962) has 
made extensive calculations based on atmospheric conditions and has indicated 
graphically where these second-order effects become important. 

By using a perturbation procedure (such as the one by Van Dyke 1962a), the 
resulting second-order boundary-layer equations are linear and can be subdivided 
to exhibit several second-order boundary-layer effects. These effects are due to 
vorticity, longitudinal curvature, transverse curvature, displacement, slip, and 
temperature jump. 

Several authors in addition to Van Dyke ( 1 9 6 2 ~ )  have derived the second- 
order boundary-layer equations and have provided solutions which are valid in 
the stagnation-point region only. Among these authors are Lenard (1962) and 
Maslen (1962). The solutions found by them are obtained as the first term of a 
Blasius series expansion in the co-ordinate along the body surface. In  general 
these authors are in agreement in their results with the exception of the solutions 
for the effect of vorticity interaction. This conflict appears now to be resolved 
with most authors being in agreement as to the correct way to compute this 
effect. 

In  this paper the second-order boundary-layer equations as derived by Van 
Dyke are used and solutions are obtained to these equations by using an implicit 
finite-difference method. The finite-difference solutions are computed for several 
nose radii downstream and provide for the first time solutions which are not 
limited to the stagnation-point region. 

Three inviscid flow cases are considered for use with the finite-difference 
method. These cases are a paraboloid at free-stream Mach number infinity, a 
hyperboloid at free-stream Mach number infinity, and a sphere at free-stream 
Mach number 10. t These inviscid solutions used for obtaining the surface-pressure 
distributions for the boundary-layer computations are exact in the sense that 
they are numerical solutions to the complete inviscid equations. All of the second- 
order boundary-layer effects are considered, so that the finite-difference solutions 
obtained to the boundary-layer equations represent a complete first- and second- 
order theory. 

providing the inviscid solutions for these cases. 
t Thanks are due to Mr Harvard Lomax and the Ames Research Center of NASA for 
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The finite-difference method used is an implicit one similar to the method of 
Flugge-Lotz & Blottner (1962) but altered to improve the accuracy. It is found to 
be both stable and accurate. Several checks have been made on its accuracy, and 
it has been found that the error is less than 1 % for most of the examples computed. 
These examples considered contain solutions to the cases of wall to stagnation- 
point temperature ratios of 0.2 and 0.6. The case of variable wall temperature 
could, however, be considered just as easily as these cases of constant wall 
temperature. 

The finite-difference solutions agree with the stagnation-point solutions 
obtained by a Blasius series expansion near the stagnation-point, however, as the 
finite-difference solution proceeds away from the stagnation-point, it  is found as 
expected that the solutions obtained differ from the results obtained from using 
the series results. This is due to the limited range of applicability of one term of 
the Blasius series expansion. 

Some interesting results are found in some of the specific flow cases. One of 
these is the case of flow past a sphere a t  free-stream Mach number 10. They show 
that with diminishing favourable pressure gradient some of the second-order 
boundary-layer quantities become large when compared with first-order quanti- 
ties. (For example, v2, the second-order normal velocity component, becomes 
large compared to the first-order component vl.) This indicates that the boundary- 
layer expansion is not uniformly valid near separation, a fact which has long 
been known but never before exhibited in this manner. Another interesting case 
is that of the flow past a hyperboloid at free-stream Mach number infinity. This 
case exhibits, as expected, the growth of the effect of vorticity interaction as the 
computations proceed downstream. This indicates that the effect of vorticity 
interaction will become a first-order effect at distances far downstream from the 
nose of a hyperboloid. 

2. Formulation of the problem 
2.1. Go-ordinate system 

A body of revolution with longitudinal curvature K* and nose radius of curvature 
a* lies in a flow field with constant velocity U z  (parallel to the body axis) a t  
infinity. The density p: and temperature T*, are given. The specific heat cp* and 
Prandtl number (T are assumed to be constant, and the gas is assumed to be 
perfect. The co-ordinates of a point in the flow field and the velocity components 
are described in figure 1. The s* and n* co-ordinates are along and normal to the 
body surface respectively. The u* and v* velocity components are parallel to the 
co-ordinate lines, as shown in figure 1. 

2.2. Dimensionless quantities 

In  the following the unstarred quantities are dimensionless and the starred 
quantities dimensional. For convenience in comparing with Van Dyke (1962a) 
the notation and dimensionless system will parallel his closely. The non-dimen- 
sional variables and constants remain bounded in the stagnation region as M, 

38-2 
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FIGURE 1. Co-ordinate system. 

goes to infinity. Co-ordinates and velocity components are explained in figure 1 .  
The quantityj equals 0 for plane flow and equals 1 for axisymmetric flow. Thus 

s = $*/a*, the co-ordinate along body surface, ( 2 . l a )  

n = n*/a*, the co-ordinate normal to body surface, (2 . lb )  

r = r*/a*, the radius to the body surface from the axis of symmetry, ( 2 . 1  d )  

u = u*/ U z  , (2 .1  e )  
w = v*/U2',, ( 2 . l f )  

p = p*/p$ , ,  the density, (2 . lh)  

a = a*/a* = 1 ,  the nose radius, (2 . l c )  

the velocity component parallel to the body surface, 
the velocity component normal to the body surface, 

p = p*/pz  Uz2 ,  the pressure, (2.19) 

T = T*c,*/Uz2, the absolute temperature, ( 2 . 1 9  

@ = @*/pz Uza*l+i, the stream function, ( 2 . W  
S = S*/c,*, the entropy, (2.11%) 

h = h*/Uz2, the enthalpy, (2.11) 

p = p*(T*)/p*(  U*,"/c,*), the viscosity coefficient, ( 2 .  l m )  
K = K*/a*, the longitudinal surface curvature, (2.ln) 

5 = ?*/pz  Uz2,  the shear stress, (2 .10 )  

q = q*/pz Uz3, heat transfer, ( 2 . 1 P )  
6" = G*/a*s, the displacement thickness, (2 . lq)  

R, = U z a * p ~ / p * ( T ~ ) ,  the Reynolds number, (2.1s) 
8 = [p*( Uz2/c,*)/pz U z  a*]*, perturbation parameter. ( 2 . l t )  

- 

C = C * / T z [ l +  +(r - 1 )  M:] ,  the Sutherland constant, (2 . l r )  

Hereafter all unstarred quantities will be considered to be dimensionless. 
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2.3. Reduction of the Napier-Stokes equations to include only second-order 
terms in a parameter related to a Reynolds number 

The compressible Navier-Stokes equations can be written in the curvilinear 
co-ordinate system of $ 2.1. This has been done, for instance, by Van Dyke (1962a) 
and Maslen (1962). We can then examine these equations keeping in mind that 
we wish to keep terms of second order in both the boundary layer and outer flow 
regions (see $2.4). Using Van Dyke’s (1962a) equations (2.3)-(2.7)’ we obtain the 
following dimensionless equations. 
continuity: 
8-momentum: 

(2.2a) [ (r  + n cos S)i pu],  + [( 1 + K n )  ( r  + n cos S)i pv],  = 0;  

p{uu,/( 1 + m) +wu, + .uv/( 1 + m)} +p,/( 1 + K n )  = e2[(pu,), - K U ~ ,  

+,u(K+jCosO/r) u,]; (2.2b) 

(2.2c) 
n-momentum: 

energy : 
p{uv,/( 1 + K n )  + wv, - K U ~ / (  1 + m)} +p, = 0;  

P { U T , / P  + K n )  + VT,) - {UP,/( 1 + K n )  + VP,> 
= ~ 2 [ a - l ( , u T , ) , + a - l ( ~ + j ~ 0 ~ e / r ) p T , + p ~ ~ -  ~ ~ K u u , ] ;  ( 2 . 2 4  

state: P = (7- 1)PT/Y* (2.2e) 

Four of the above equations are quasi-linear partial differential equations. Two 
of these partial differential equations are second order and the remaining two are 
first order. The last equation (state equation) is an algebraic equation. These five 
equations contain six unknowns (u, v ,p ,  p, T and p) and therefore one more 
equation is needed in order that a solution can be obtained. This equation is given 
by a viscosity law which expresses p ,  the viscosity, as an algebraic function of 
the temperature T.  The relation which will be used for the viscosity law will be 
given later. 

Comparing these equations (2.2 a-e)  with Van Dyke’s ( 1  962 a )  equations 
(2.3-2.7), we see that we have retained terms to order E in both the outer (i.e. 
u = U, v = V, n = E ,  etc.)? and the inner (i.e. u = U, v = E E ,  n = EE, etc.) regions 
(see $2.4). These equations are therefore uniformly valid to order E in the entire 
flow field. This is an especially reasonable reduction when it is borne in mind that 
the Navier-Stokes equations (without higher-order correction terms) themselves 
are only physically accurate to the order of the terms retained in the equations 
(2.2-e) above. 

In  using equations ( 2 . 2 ~ ) ’  we use the Rankine-Hugoniot shock relations as 
one set of boundary conditions since the effect of shock wave thickness and 
structure does not appear to the order of the approximation used here. In  a 
higher-order approximation we would, however, have to consider the shock wave 
structure as well as other higher-order effects which would appear in that 
approximation, which are not included even in the Navier-Stokes equations. 
This would require the use of the Burnett equations (whose validity is question- 

? Barred quantities indicate quantities which are of order unity in the region of interest. 
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able) or some other equivalent system of equations. (See Chapman & Cowling 
1961, ch. 15, for the higher-order or Burnett correction terms to the Navier- 
Stokes equations.) 

I n  addition to the Rankine-Hugoniot shock relations to be applied a t  the 
shock we must apply the following boundary conditions at the body surface (see 
Van Dyke 1962a, and Street 1960): 

In the above a, and c1 are constants (see Street 1960) and the subscript b refers to 
the body surface. Equation (2.3b) may be replaced by a condition on the wall 
heat transfer. These boundary conditions allowing for slip and temperature jump 
at the surface are accurate to the same order as the governing equations (2 .2~-e) .  

It is interesting to inquire into the type of the partial differential equations 
(2.2a-e) (i.e. whether they are elliptic, parabolic, or hyperbolic). This is done by 
studying the characteristics of that system of equations.? There are two possible 
solutions for the characteristics. Letting ,8 be a curve parameter defining the 
characteristics, we find for the characteristics one solution, 

{ds(,8)/d/3}2 = 0 or s = const., 
and another solution, 

- =  an [ " - ( - ) ] ( l + m ) .  1 P +  
as u u p  

( 2 . 4 ~ )  

(2 .4b )  

The first solution ( 2 . 4 ~ )  indicates that the equations (2.2a-e) are parabolic, 
whereas the second solution (2 .4b)  indicates that they are hyperbolic. This 
conclusion is puzzling a t  first until we notice that the highest derivatives in v and 
p appear in the n momentum equation ( 2 . 2 ~ )  and the continuity equation ( 2 . 2 ~ )  
while the highest derivatives of u and T do not. This means that these two 
equations ( 2 . 2 ~ ~  and 2 . 2 ~ )  alone determine the nature of the solution for v and p ,  
which happens to be hyperbolic. The other two equations (the s momentum 
(2.2b) and energy ( 2 . 2 4  equations) then behave in a parabolic manner. 

This dual nature of the system of equations (2 .2~-e )  may make numerical 
solution of the complete equations difficult even though parabolic and hyperbolic 
equations are in principle the easiest to handle by numerical methods. The 
development of a numerical scheme which handles two of the equations in a 
manner applicable to parabolic equations while handling the other two as 
hyperbolic equations may lead to computational difficulties. 

Cheng (1963) has derived a similar set of equations which however contain in 
addition the thin shock layer approximation. His equations (5.1) are similar in 
form to our equations (2 .2~-e) .  It should be noted, however, that Cheng has not 
included all of the second-order terms. In  particular his s-momentum equation 
and his energy equation have several of the second-order longitudinal and 

t For a discussion of the determination of the characteristics of a system of non-linear 
partial differential equations see Petrovsky (1954, p. 26). 
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transverse curvature terms missing. We should keep this in mind later when we 
compare the second-order results obtained from a perturbation analysis with the 
results of Cheng. (Cheng is aware of the deletion of these terms and has noted 
that they are omitted in his paper.) 

In  additon Cheng keeps a term in the n-momentum equation in (pw& which 
is strictly a third-order term, while other third-order terms are deleted. It is 
interesting to note that keeping this and other third-order terms in just the 
n-momentum equation makes the set of equations (2.2b-d) parabolic. From a 
viewpoint of solving the equations (2 .2~-e )  numerically it may be desirable to 
keep the third-order terms in the n-momentum equation, even though it is in- 
consistent from an order of magnitude viewpoint. 

An examination of equations ( 2 . 2 ~ )  shows that the second-order curvature 
terms have no effect on the parabolic or hyperbolic nature of the differential 
equations since they involve only lower-order derivatives. It therefore appears 
that Cheng (1963) could include these terms in his equations (5.1) without in- 
creasing the difficulty of solving his equations numerically since his equations 
would still remain parabolic. This will not be the case if we go to third-order 
terms in the s-momentum equation (2.2b) and in the energy equation (2.24. 
Appearing in the s-momentum equation will be terms involving us,, etc., and we 
will therefore probably return to the original elliptic nature of the Navier-Stokes 
equations. (This point has not been checked, however.) 

We conclude therefore that if one wishes to handle the entire set of equations 
(2.2a-e) a t  once numerically, it  appears that the simplest method of approach 
would be to treat them in a manner in which the equations are parabolic. This is 
accomplished as has been noted above by keeping third-order terms in the 
n-momentum equation while keeping only second-order terms in the other 
equations. It appears that an approach which treats the entire shock layer at 
once using parabolic type equations is therefore possible and would be worth 
looking into. 

Van Dyke (1962~) derived the first- and second-order boundary-layer equations 
for a plane or axisymmetrical blunt body at zero angle of attack by using the 
systematic method of inner and outer expansions (or matched asymptotic 
expansions) due to Lagerstrom, Kaplun and Cole. In  deriving the equations he 
started from the full compressible Navier-Stokes and energy equations, however 
this is not necessary and equations ( 2 . 2 ~ )  could be used since they contain all 
of the necessary second-order terms. He has found that there are seven second- 
order effects, one of which is an effect due to an enthalpy gradient across stream- 
lines. In  flows where the enthalpy is constant throughout the flow field in front 
of the shock wave, it will remain constant across the shock wave and therefore 
the enthalpy gradient will be zero. This is the usual case, and we will therefore not 
consider this effect. The six remaining second-order boundary-layer effects 
(whose division is somewhat arbitrary) are entropy gradient (vorticity), trans- 
verse curvature, longitudinal curvature, displacement, slip, and temperature 
jump. We will consider all of these second-order effects; however, we will lump the 
slip and temperature jump terms together and treat them as one. 

2.4. Perturbation method for solution of the problem 
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(a) Perturbation scheme. Van Dyke ( 1 9 6 2 4  took the following expansion 
scheme with the perturbation parameter 

e = [ , ~ * ( U ~ ~ / c J p * ) / p ~  Uza*]*. 

This scheme seems reasonable as long as the body is analytic. We could have first 
left the dependence on e unspecified in the expansion, and upon substitution into 
the full Navier-Stokes and energy equations we would have found that, when we 
consider the boundary conditions, the only meaningful expansion scheme is the 
one given below. 

Outer expansion: u(s ,n;s )  - U1(s,n)+eU2(s,n)+ ...,f- (2.5a) 

948, n; E )  - q ( s ,  n) + eQ(s, n) + . . . , ( 2 . 5 b )  

p(s ,  n; E )  - Pl(s, n) + d ! z ( 8 ,  n) + . . . , ( 2 . 5 ~ )  

p(s, n; e)  - Rl(s, n) + eR2(s, n) + . . . , (2.5d) 

T(s,  n; e)  - T‘(s, n)  + sT,(s, n) + . . . , (2.5e) 

$(s, n; e)  - Yl(s, n) + &!,(8, n) + . . . . ( 2 3 f  1 
Inner expansion: u(s, n; e) - ul(s, N )  + eu,(s, N )  + . . . , (2.6a) 

v(s, n; e )  - w1(s, N )  + e2v2(s, N )  + . . . , (2.6b) 

P ( S 7  n; €1 - p,(s, N )  + ep,(s, N )  + . -, ( 2 . 6 ~ )  

p(’, n; ‘) N ,  +ep2(s7 N ,  + . * * 7  (2.6d) 

T(s,  n; 8) N t,(s, 3) + st&, N )  + . . ., (2.6e) 

$(s, n; e )  - e@,(s, N )  + e2$,(s, N )  + . . .. (2.6f 1 

N = njc. (2.7) 

In  the above expressions the normal co-ordinates are related by 

It is also necessary to expand the viscosity in a Taylor series expansion about t, 
as follows: 

AT) = At,)  + V’(t1) t ,  + * - * (2.8) 

with P’(t1) = (aP/at)t l .  (2.9) 

The expansion schemes used herein (equations (2.5)-( 2.9)) seem reasonable 
since the boundary-layer thickness at high Mach numbers can be shown to be 
O(E) ,  whereas the thickness of the bow shock wave is O(e2) and the shock-layer 
thickness itself is O( 1). (See Van Dyke 1962a.) 

If it  is assumed that the viscosity coefficient p is proportional to T to some 
power w ,  then E ,  the perturbation parameter, can be written as follows: 

(2.10) e = [(y - 1) M2,]W/2/R&. 

Here M, is the free-stream Mach number, and R, the Reynolds number formed 
with the nose radius as reference length. 

In  all of the work contained in this paper the definition of e used will be that of 
equation (2.10) and w will be taken to be a. This simplification is not necessary 
and a more exact viscosity law such as Sutherland‘s could be used; however for 

The symbol N means asymptotically equal to. 
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the flow cases considered herein the value of w = + gives a good approximation 
to the Sutherland law for high .free-stream Mach numbers. 

(b) Matching conditions. The inner expansion is valid in a reign of O(s) near the 
body and the outer expansion is valid in the region outside this region of O(s). 
Substituting the inner and outer expansions into the reduced Navier-Stokes and 
energy equations (2.2 a-e), we obtain partial differential equations from taking 
successive terms in E which are of lower order than the original equations. This 
means that we cannot in general expect the resulting equations to satisfy all of 
the boundary conditions which the reduced Navier-Stokes and energy equations 
( 2 . 2 ~ - e )  satisfied. For instance, we do not expect the outer expansion to satisfy 
the condition of zero u component of velocity at the wall, or if slip is permitted, 
the slip condition will be violated. This means that the ‘lost’ boundary conditions 
must be replaced by something which makes the problem determinate. These 
conditions are found to be the matching principle of Lagerstrom (1957). A good 
explanation of the matching principle along with a more rigorous discussion of 
innerandouterexpansionsingeneralcanalsobefoundinapaperbyErdelyi (1961). 

The matching principle can be stated as follows: 
m-term inner expansion of ( p-term outer expansion) 

=p-term outer expansion of (m-term inner expansion). 
Van Dyke ( 1 9 6 2 ~ )  applied this principle with m = p and m = p - 1 and obtained 
the appropriate matching conditions. 

(c )  First- and second-order equations for the boundary layer. First the full 
compressible Navier-Stokes and energy equations are written in the co-ordinate 
system of $2.1 non-dimensionalized by equations (2.1 a-t) (to the second order 
this produces equations ( 2 . 2 ~ ) )  and expanded first into the outer expansion 
and then into the inner expansion by equations ( 2 . 5 ~ - e )  and equations (2 .6~-e) .  
Then by collecting terms in successive powers of E and equating these to zero, we 
obtain the partial differential equations describing the outer and inner flows. They 
comprise both plane and axisymmetric flow. The exponent j equals 0 for plane 
flow and equals 1 for axisymmetric flow. The subscripts s and N indicate 
differentiation, and 1.5’: denotes dSl /dYl  where 8, and Y1 are the first-order 
entropy and stream functions, respectively, in the outer inviscid flow. (The 
conventional entropy and stream functions obtained from the compressible 
Euler equations.) 

Both the first- and second-order boundary-layer partial differential equations 
can be shown to be of the parabolic type. This fact will be relied on heavily later 
when a numerical method of solution applicable to parabolic type equations will 
be used. 

First-order boundary-layer equations 
continuity : (riPlul)s+ (r iPls)N = 0; (2.11) 
momentum: Pl(U1UlS 4- %U1N) - (rUUUV)N = -%(s, 0); (2.12) 
energy : Pl(Ult1,  + V l t U V )  -PU& - (Pfl-ltliv)N = %%(S, 0); (2.13) 
pressure condition : t P l t l  = (~lTl),=o; (2.14) 

f In both the first- and second-order boundary-layer equations the pressure condition 
replaces the n-momentum equation. 
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boundary conditions : u&, 0 )  = wl(s, 0 )  = 0, 

tl@, 0) = Ta(s), 

or a condition on heat transfer at the wall; 
matching conditions: 

(2.15a, b )  

(2.15 c )  

ul(s, N )  N Ul(s, 0) ,  t,(s, N )  - T1(8, 0 )  as N +co. (2.16a, b )  

These are the familiar compressible boundary-layer equations in non-dimensional 
form, and the number of equations equals the number of unknowns if a viscosity 
law is specified. 

Second-order boundary-layer equations (see Van Dyke 1962 a, pp. 54-55) 

continuity : 

[ 4 P l U 2  + P2Ul)lS + [rQ1v2 + P22.'l)lN 

= O - ~ r j ( A ' p l v l ) , - ~ [ ( r ~ ~ e N p , u l )  - ( r j7Np1v l )  cog e ] + O + O ;  (2.17) 
S N r 

V. L.C. T.C. D. S.+T.J. 

momentum : 

~1(u1u2s+u2u l s  + v l u 2 N ~ v 2 u l i N )  +P2(Ul"ls+v1u1N) - (r"uZN+~'U1Nt2)N 

(2.18) 

(2.19) 

(2.20) 
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boundary conditions: 

u,(s,O) = O + O + O + O + a ,  [A &l tl) P 1 N ]  , (2.2 1 a) 
N = O  

V. L.C.T.C. D. S. +T.J. 

v,(s,O) = o + o + o + o + o ,  
V. L.C.T.C. D. S.+T.J. 

(2.21b) 

t , (s ,O)  = o + o + o + o + c ,  [A J(?t,)pt,N] (2.21c) 
N = O  

V. L.C. T.C. D. S. + T. J. 

or a condition on the second-order term for heat transfer at the wall; 

matching conditions: 

(2.22a) 

as N+m, 

(2.22 b )  

u2(s, N )  N - riN[R,T,S;] n. = 0 - K"U1ln =o + 0 + [U,], = 0 + 0 

t,(s, N )  - r W 3 ,  T,S; qi, = o  + KN[ ~ ; i ~ = ~  + o + ~ q ~ = ~  + o 
V. L.C. T.C. D. S.+T.J. 

V. L.C. T.C. D. S.+T.J. 

The V., L.C., T.C., D., and S. + T.J. appearing under the right-hand terms in the 
preceding equations signify the contributions due to vorticity, longitudinal 
curvature, transverse curvature, displacement, and slip and temperature jump, 
respectively. Since the equations are linear, these various effects can be solved 
for separately. This will be done in the numerical examples. This division is some- 
what arbitrary and it is possible to divide the second-order effects in other ways. 
In  particular the vorticity and displacement terms have been divided in another 
way by some authors. The way that they are divided here is the same as that of 
Van Dyke (19624  upon whose work this section is based. Van Dyke (1962 b) has 
discussed how various authors have divided the second-order terms, and in his 
terminology the displacement term used herein should be called the 'displace- 
ment speed' term. 

The quantities with the subscripts one in equations (2.17)-(2.22) are known 
from the solution of the first-order boundary-layer equations (2.1 1)-( 2.16) and 
from the first-order inviscid solution. Knowing these quantities, equations 
(2.17)-(2.22) can be solved if a viscosity law is specified (the number of equations 
equals the number of unknowns). 

The term S;(O) appearing in the second-order equations is defined as 

where 0,-i = 0 for plane flow and 1 for axisymmetric flow. a is the ratio of body 
to shock nose radius. Therefore we see that there is no effect of vorticity for plane 
flow to the second order. 

Appearing on the right-hand side of the second-order momentum equation 
(2.22) is the quantity &(s, 0). It can be shown that by using the matching prin- 
ciple, the relation (2.30) for the displacement thickness and the first-order 
continuity equation (2.1 l ) ,  the following relation exists, 

K(s, 0) = (l/.jR,(s, O))d{rfR,(s, 0) U,(Sl, 0) 3*)/ds; (2.24) 
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this shows that the boundary layer through its displacement thickness acts on the 
outer flow as a distribution of sources along the body surface. This relation (2.24) 
will be used in the numerical step-by-step computations. Equation (2.24) means 
that we do not need to solve the second-order problem for the outer flow in order 
to calculate the second-order effect of vorticity in the boundary layer. As would 
be expected, the first-order equations for the outer flow do not show a viscosity 
influence and therefore turn out to be the familiar compressible Euler equations, 
and the second-order equations for the outer flow show that to the second order 
in the outer flow the flow field is that about the original body plus displacement 
thickness. 

( d )  Heat transfer, shear stress, and displacement thickness. The non-dimensional 
heat transfer and shear stress are defined as follows: 
heat transfer : 

= ~ q ~ + € ~ q ~ + . . . . ; t  (2.25) 

(2.26) 

In  terms of the first- and second-order boundary-layer quantities the non- 
dimensional heat transfer and shear stress are then found to be as follows: 
heat transfer : 

shear Stress: ? = €[paU,/~N]N=o+€2[paU2/~N+p't2~Ul/~N]N=o+ .... (2.28) 

The displacement thickness for the first-order boundary layer is defined as 

using non-dimensional quantities we therefore get 

(2.29) 

(2.30) 

3. Solutions for hypersonic flow past axisymmetric blunt bodies 
3.1. Problems to be considered 

In  this section an implicit finite-difference method will be used for solving some 
typical first- and second-order boundary-layer problems. In  all cases the gas will 
be assumed to be perfect with ratio of specific heats y = 1.4, the Prandtl number 
a will be assumed a constant equal to 0.7 and the viscosity law will be taken to 
be the square root law (i.e. p cc T*). The particular examples chosen are a para- 
boloid and a hyperboloid at free-stream Mach number infinity and a sphere at 
free-stream Mach number 10. The solutions for the inviscid flow past these bodies 
have been provided by H. Lomax of the Ames Research Center of the NASA. 
They are exact solutions in the sense that the full inviscid Euler equations were 

The second term in the heat transfer expression arises due to slip at the wall, see 
Maslen (1958). 
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solvednumerically for obtaining them (see Inouye & Lomax 1962 for a description 
of the method of solution). Such a numerical inviscid solution is sufficient for 
solving the first-order boundary-layer equations and also for solving for all of the 
second-order effects with the exception of displacement thickness. 

To be exact, the effect of displacement thickness should be solved for by 
perturbing the numerical solution for the first-order inviscid solution ; however, 
this will not be done and the flow due to displacement thickness will be solved for 
by approximating the body plus displacement thickness by the original body 
shifted and expanded to fit the body consisting of old body plus displacement 
thickness. This should give a good approximation to the flow due to displacement 
thickness. The fit to the displacement thickness curve by this approximation will 
be demonstrated to be good in most cases. 

Due to the favourable pressure gradient at the surface in both the flow past the 
paraboloid and the hyperboloid, boundary-layer separation will not occur in 
either of these cases; however, separation will occur in the case of flow past a 
sphere. It will be interesting to investigate the flow near separation, and in 
particular study the behaviour of the second-order terms. It is generally accepted 
that boundary-layer theory is not valid in the region of separation, and if this is 
true, we would expect this to show up in the second-order terms as the point of 
separation is approached. We would expect some of the second-order terms to 
become large near separation. 

3.2. Solution of the Jirst- and second-order boundary-layer equations by 
Jinite-difference methods 

Both the first- and second-order compressible boundary-layer equations, 
equations (2.11)-(2.16) and (2.17)-(2.22), are systems of parabolic partial 
differential equations. As far as a numerical solution is concerned, the most 
important feature of both of these sets of equations is that they are parabolic. 
This feature allows the equations to be integrated by a step-by-step procedure 
along the body surface. In  order to put the equations in a form in which this 
step-by-step procedure can be carried out, the derivatives with respect to s must 
be replaced by finite-difference quotients. We will also assume that the deriva- 
tives with respect to N are replaced by difference quotients in order to obtain a 
set of difference equations rather than the original set of difference-differential 
equations. 

The manner in which the differential quotients in the s-direction are replaced 
with s-difference quotients will determine whether the resulting difference 
equations will be of the explicit or implicit type. If forward s-difference quotients 
are taken, the equations will be of the explicit type, and if backward s-difference 
quotients are taken, they will be implicit. The number of grid points used in 
forming the difference quotients in the s-direction will determine the accuracy of 
the replacement of differentials by differences in that direction. In  an implicit 
method an increase of the number of grid points is usually helpful in obtaining 
more accurate solutions; however, in an explicit method this will usually decrease 
the stability of the difference-equation scheme, as compared to that of the 
simplest two-point forward-difference scheme. 
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The explicit method of solution has been examined in detail in Crocco variables 
by Flugge-Lotz & Baxter (1956), and Baxter & Fliigge-Lotz (1957). Among other 
investigations into explicit methods of solution are those of Flugge-Lotz & Yu 
(1960) and Wu (1960). All of these methods have found only limited application 
due almost entirely to the severe requirements for stability placed on their 
difference equations. Explicit methods, such as the Dufort-Frankel scheme used 
by Raetz (1957),  may be used to overcome the stability problem; however, the 
truncation errors involved in that particular method may lead to inaccuracies 
which may be above those which can be tolerated, especially when one is con- 
sidering evaluating second-order boundary-layer quantities. For these reasons 
the idea of using explicit methods for calculating solutions to the first- and second- 
order boundary-layer equations will not be considered further, and we will 
restrict ourselves to the implicit method only. 

Until the present the only implicit finite-difference method developed for 
treating the boundary-layer equations has been that of Flugge-Lotz & Blottner 
(1962) (excluding a modification of Fliigge-Lotz & Blottner’s method by Cheng 
1963 to treat these thin shock-layer equations). The method Smith & Clutter 
(1963a, b )  developed somewhat later is actually fairly close in idea to Flugge-Lotz 
& Blottner’s method, even though i t  cannot strictly be called a finite-difference 
method since the N-derivatives are left in differential form and not replaced by 
finite differences. It should be referred to more properly as a mixed or difference- 
differential method. Both of these methods have been shown to be accurate and 
to give results in a reasonable computing time. 

In  order to form a practical implicit-difference scheme, the difference equations 
must be linearized so that the simultaneous algebraic equations can easily be 
solved. This may be achieved without a sacrifice in accuracy, as can be borne out 
in comparison with known analytic results. The method of linearization and 
solution used closely parallel that of Fliigge-Lotz & Blottner (1962) with modi- 
fications to improve the accuracy. These modifications primarily involve the use 
of three-point backward differences in the s-direction to produce truncation 
errors of order   AS)^ rather than As. This is desirable since the errors in the N -  
direction in their method were of order (AN)2.  The advantage of using the three- 
point difference scheme will be greater accuracy with a slightly larger step size in 
As with very little increase in computing time per step. (The overall computing 
time may even be reduced due to the larger step size.) Details of the implicit 
method will be purposely omitted; for those the reader is referred to Flugge-Lotz 
& Blottzer (1962) and Davis & Flugge-Lotz (1963). 

3.3. Boundary-layer solutions for $ow past a paraboloid at 
free-stream Mach number inJinity 

The inviscid surface pressure distribution for this case (provided by H. Lomax) 
is given in figure 2 as a function of the dimensionless distance s measured along 
the surface of the body from the stagnation-point. By the method of least 
squares, polynomials were determined which represent the original numerical 
pressure data to at least three places at all points along the body surface. This 
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required the use of two polynomials in the case of a parabola, one which was good 
near the nose and another which was good further back on the body surface. 

( a )  First-order solutions for the paraboloid. Figures 3-5 give the first-order 
results for the flow past the paraboloid at M, = a, y = 2. A variety of wall 
conditions were chosen, including the case of the insulated wall. It may be noted 

8 

FIGURE 2. Surface-pressure distribution for a paraboloid and a hyperboloid 
at M ,  = 00, y = 5. 

FIGURE 3. First-order shear on a paraboloid and a hyperboloid at M ,  = co, y = 2. 
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that the results for the insulated wall vary only slightly from the results obtained 
for the case of wall to stagnation-point temperature ratio b, of 1.0. 

In  order to check the accuracy of the finite-difference solution, the results from 
it are compared with two terms of the Blasius series for the first-order boundary- 
layer theory (see Davis & Flugge-Lotz 1964). These results are given in table 1 
for the case of wall to stagnation-point temperature ratio b, of 0.6. We see 
that at first the series solution and finite-difference solution do not agree 
well. This is due to the fact that the initial profiles obtained from the Blasius 

S 

FIGURE 4. First-order heat transfer on a paraboloid and a hyperboloid 
at M ,  = CO, y = 8. 

S 

0.05 
0.10 
0.15 
0.20 
0-25 
0.30 
0.35 

Series results 

51(5,0) c/~(s,  0) 
0.0524 - 0.3091 
0.1036 - 0.3063 
0.1524 - 0.3017 
0.1977 - 0.2953 
0.2383 - 0.2870 
0.2729 - 0.2769 
0.3005 - 0.2650 

- 
a* 

0.1429 
0.1444 
0.1468 
0.1503 
0.1547 
0.1602 
0.1666 

TABLE 1 

Finite-difference results - 
?1(s, 0) c/~(s, 0) 6' 
0.0517 -0.2858 0.1387 
0.1034 - 0.3041 0.1441 
0.1524 -0.3010 0.1469 
0.1982 - 0.2953 0.1504 
0.2401 - 0.2881 0.1549 
0.2775 - 0.2798 0.1603 
0.3101 - 0.2707 0.1667 
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series are not exact solutions to the finite-difference equations. This causes the 
finite-difference solutions to oscillate for a few steps, but then this oscillation dies 
out and after a few steps (actually about 20, since the results presented here are 
obtained from computations with As = 0 - O O S ) ,  the series solution agrees quite 
well with the finite-difference solution. This agreement is seen to be to three or 

S 

FIGURE 5. Displacement thickness on a paraboloid at &Im = CO, y = 8. 

four places from s = 0.15 to s = 0.25. We then see that the series solution begins 
to diverge from the finite-difference solution as s increases. This is due to the fact 
that only two terms of the Blasius series solution were used and hence the range 
of its validity is limited to a region close to the stagnation-point. In  cases where 
exact solutions are known for the complete boundary-layer equations (for 
example, the flat plate), it has been found that the accuracy of the finite- 
difference method increases as the computations proceed downstream. For this 
reason we expect that we will obtain even better accuracy than has been displayed 
here as we proceed away from the stagnation-point. The results for two terms of 
the Blasius series are plotted on figures 3-5 for the case of b, = 0.6 for comparison 
with the finite-difference solutions. 

39 Fluid Mech. 20 
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(b) Second-order solutions for the paraboloid. The finite-difference solutions to 
the second-order boundary -layer equations are carried out in exactly the same 
manner as the first-order equations. Several points which have not yet been 
covered will, however, be discussed here. 

In  order to compute the second-order effect of displacement thickness on the 
boundary layer, it  is necessary to compute the outer flow corresponding to a_ 
paraboloid thickened by the displacement thickness. The values for the desired 
second-order quantities, assuming that the body plus displacement thickness can 
be approximated by a shifted, expanded paraboloid are obtained as follows. If 
the original body-nose radius of curvature is given by a* and the body approxi- 
mating the original body plus displacement thickness has a nose radius of 
curvature a:, then the (s, n)-co-ordinates are non-dimensionalized by a* and the 
(s,, n,)-co-ordinates by a:. The (s, n)-co-ordinates correspond to the original 
body and the (s,, n,)-co-ordinates correspond to the shifted expanded body 
approximating the original body plus displacement thickness. In  terms of these 
quantities we have the following: 

(3.1) eU2(s, 0 )  = (sl-s)aU,(s, O)/as-(n,-n) [KUl+r~RITl~~] ,=o,  
eR2(s, 0)  = (s,-s)aR,(s, O)/as+(n,-n) [KR,U?/(Y- 1 ) T , - r ~ R 2 , ~ S ; ] n = 0 ,  

(3.2) 
(3.3) eT2(s, 0)  = (s, - s) aT,(s, O)/as  + (n, - n) [KU: + ri V, TIS& 

where s1 - s and n, - n are determined approximately so as to give the best fit of 
the shifted expanded body to the original body plus displacement thickness. 
In  obtaining the above expressions ((3.1)-(3.3)), the quantities aU,(s, O)/an, 
aR,(s, O ) / h  and aT,(s, O)/an are needed. These can be obtained from Van Dyke 
(1962a, p. 47). 

We will also need the relation for &(s, 0). Expanding to find G(s, 0 ) ,  as was done 
in obtaining U2(s, 0), R2(s, 0) and T2(s, 0) in equations (3.1)-(3.3), we find 

&(s, 0 )  = Ul(s, 0 )  d ( n  - n,)/ds + (s, -8) aq(s,  O ) / &  + (n, - n) aK(s, O)/an. (3.4) 
The first term on the right-hand side arises because the velocity components in the 
(s, n)-co-ordinates are in a slightly different direction from the velocity com- 
ponents in the (s,,n,)-direction. This effect is negligible in the expression for 
U2(s, 0) given by equation (3.1). Using the fact that aq(s ,  O)/as = 0,  we then 
obtain 

Using the continuity equation to evaluate aq(s ,  O ) / &  we then find that 
~G(s, 0 )  = U,(S, 0 )  d ( n  -n1)/d5 + (nl- n) aq(s,  O)/an. 

e&(s, 0) = -{l/rfB,(s, O)}d[riR,(s, 0) Ul(s, 0)  (n,-%)]ids. 

(3.5) 

(3.6) 

(3.7) 

Comparing this with equation (2.24), we obtain 
- 

(n, - n) = -€a*. 
Let the shifted, expanded paraboloid be situated with respect to the original 

paraboloid as indicated in figure 6. Then we find that after some simple but 
tedious computation 

(81 - 5) = - er[Q + 4r2((Q + Q)1/(1+ r2)4 
(121 - n) = - 441 + 6 - [C,+ 4r2(C1 + ! 3 1 / ( 1 +  r”} ( 1  + r2P.  

( 3 4  
(3.9) 
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Since the relation d* = - (nl - n) exists, we determine the constants so that the 
expression (3.9) gives a good fit to the displacement thickness. Figure 5 includes 
plots of equation (3.9) which have been fitted to the displacement thickness 
curves. In  general, in the subsonic region the fit is quite good, whereas it may not 
be so good further back on the body surface. 

\ 

FIGURE 6. Co-ordinate system for a shifted, expanded, paraboloid. 

The other second-order outer quantity which is needed for solving the second- 
order boundary-layer equations is K(s, 0). This quantity is given by equation 
(2.24) and can be computed knowing first-order boundary-layer quantities only. 

All of the other quantities appearing in the second-order equations can be 
handled straightforwardly. The constants a1 and c1 appearing in the second-order 
boundary conditions (2.21) have been taken to be (in)* and+s(+m)*, respectively. 

Figures7 6 and 8 show the second-order results for shear and heat transfer (see 
equations (2.25)-(2.28)) for a wall to stagnation-point temperature ratio b, 
of 0.6. The curves for the displacement effect are not so accurate as the other 
curves, because of the approximation involved in using equations (3.1)-(3.3); 
however, they do give us a good insight into how large this effect of displacement 
thickness is. In  this particular case (b,  = 0.6) it  is larger than any of the other 
second-order effects with the exception of vorticity. Figure 7 contains a dashed 
portion on the curve for the effect of displacement thickness. This indicates that 
the accuracy in that region is doubtful due to the fact that the approximation to 
the displacement thickness curve (see figure 5) does not fit so well in that region. 
Figures 9 and 10 give the results for second-order shear and heat transfer on the 
same paraboloid, but with a wall to stagnation-point temperature ratio b, of 0-2. 

-f In  the figures in this paper, T2,  q2, etc. (the second-order contributions to shear, heat 
transfer, etc.) are understood to represent only the contributions due to the particular 
effect being considered. 

39-2 
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! 0.6 1.0 1 *4 1.8 2.2 2.6 
9 

FIGURE 7. Second-order sheer on a paraboloid at M ,  = co, y = $, b, = 0.6. 

= 0-6. 
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3.4. Boundary-layer solutions for $ow past a hyperboloid at 
free-stream Mach number infinity 

The pressure distribution for the hyperboloid at free-stream Mach number 
infinity is given in figure 2. This pressure distribution was also provided by 
H. Lomax from a numerical solution to the full inviscid equations. The particular 

0.6 

0.4 

0.2 

0 

0 0.2 0.6 1.0 1.4 1.8 2.2 2.6 0.2 

s 

FIGURE 9. Second-order shear on a paraboloid at M ,  = co, y = g, b, = 0.2. 

0 0.2 0.6 1.0 1.4 1.8 2.2 2.6 

S 

FIGURE 10. Second-order heat transfer on a, paraboloid at M ,  = 03, y = %, b, = 0.2. 
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hyperboloid considered is one which is asymptotic to a cone which opens to a 
total interior angle of 45". For ease in computation, the numerical data of Lomax 
were approximated by an analytical curve (method of least squares). 

(a)  Pirst-order solutions for the hyperboloid. Figures 3, 4 and 11 show the 
first-order results for flow over the hyperboloid with a wall to stagnation-point 
temperature ratio b, = 0.6. Near the stagnation-point these results agree well 

a 

FIUURE 11. Displacement thickness on a hyperboloid at M ,  = a, y = Q. 

with those for the previous case of flow over a paraboloid with the same free- 
stream and wall conditions; however, due to the different body shape and 
pressure distribution these solutions do not agree as well further downstream. 
The difference between the two cases is never large, and in the case of heat transfer 
(figure 4) the difference between the two cases is barely distinguishable. If a 
hyperboloid with steeper asymptotes had been chosen, the difference between the 
solutions for the paraboloid and hyperboloid would have been larger and 
differences between the two flow cases would have been more distinguishable. 

(b)  Second-order solutions for the hyperboloid. The second-order solutions for 
the hyperboloid with wall to stagnation-point temperature ratio 6 ,  = 0.6 were 
carried out in exactly the same manner as were those for the paraboloid, and the 
results are given in figures 12 and 13. The effect of displacement thickness was 
approximated by shifting and expanding a hyperboloid to fit the original body 
plus displacement thickness as near as possible. The results of this fit are given 
in figure 11. The values of the slip and temperature jump constants used are the 
same as those used in the previous case of the paraboloid. 

Most of the second-order results for the hyperboloid are similar to the second- 
order results for the paraboloid with the notable exceptions of the second-order 
effects of vorticity interaction and displacement. Figure 12 shows that the 
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effects of vorticity interaction and displacement on the second-order shear grow 
with increasing s. These effects will continue to grow ass increases, and eventually 
the effects of vorticity interaction and displacement will become first-order 

8 

FIGURE 12. Second-order shear on a hyperboloid at M ,  = 00, y = g, bo = 0.6. 

8 

FIGURE 13. Second-order heat transfer on a hyperboloid at Mm = CO, y = 5, bo = 0.6. 
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effects. This can be seen by observing the relation given for the vorticity at the 
body surface.t This is given by Van Dyke (1962a), equation (2.23), as 

0, = rj(R,T,s;),=, (3.10) 

or a1 = W(r- l ) ~ ~ v l m = o .  (3.11) 

For the hyperboloid Pl+ const. (see figure 2) as s- fco and ( I $ ) ~ = ,  is a constant 
for all s. Then the vorticity R, at the body surface must be proportional to r for 
the hyperboloid as s-fco. This means that for large s the effects of vorticity 
interaction and displacement must become first-order effects. This is the case of 
strong vorticity interaction which has not been handled so far except for the case 
of incompressible flow past a flat plate by Ting (1960). The numerical results for 
the paraboloid (figure 7) do not indicate that this effect of strong vorticity inter- 
action occurs in that case, since the second-order shears at the wall, arising from 
vorticity and displacement, do not increase after s reaches about 2.0. The case 
of strong vorticity interaction should be examined in detail by studying the 
viscous compressible flow past a hyperboloid at a large distance s downstream. 

3.5. Boundary-layer solutions for flow past a sphere at 
free-stream Mach number 10.0 

The inviscid surface pressure distribution for the flow past a sphere a t  Mach 
number 10.0 is given in figure 14. As in the previous cases, this pressure distribu- 
tion was obtained from a numerical solution to the complete inviscid equations 
by H. Lomax. The numerical solutions to the boundary-layer equations were 
carried out in the same manner as in the previous two examples. 

s 

FIGURE 14. Surface-pressure distribution for a sphere at M ,  = 10.0, y = 6 ,  

The manner in which the vorticity enters the effects of vorticity interaction and 
displacement can be seen from equations (2.18), (2.19), (2.22), and 13.1)-)3.3). 
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( a )  First-order solutions for the sphere. Figures 15-17 give the first-order 
results for flow past a sphere at free-stream Mach number 10.0 and with a wall 
to stagnation-point temperature ratio b, = 0.6. The solutions extend back on 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
9 

FIGERE 15. First-order sheer on a sphere at  M ,  = 10.0, y = 5, b, = 0.6. 

9 

FIGURE 16. First-order heat transfer on a sphere at  M ,  = 10.0, y = 6 ,  b,  = 0.6. 

the sphere to s = 1.6, which is slightly past the mid-point of the sphere. It would 
be interesting to extend these computations further back to the point of separa- 
tion; however, the inviscid solution was not available past the point at which the 
boundary-layer solutions were terminated. 

As in the case of flow past a paraboloid, the accuracy of the finite-difference 
solution was checked by a comparison with two terms of the Blasius series for the 
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first-order boundary-layer equations for a wall to stagnation-point temperature 
ratio b, = 0.6. These results can be summarized as in table 2. 

As in the case of the paraboloid, the agreement in the finite-difference and 
series solutions is not so good at first; however, after a few steps in the finite- 

0.2 

0 

8 

FIGURE 17. Displacement thickness on a sphere at  M ,  = 10.0, y = g, b, = 0.6. 

9 

0-05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 

Series results 
+I@, 0) Pl(4 0) 
0.0593 - 0.3358 
0.1179 - 0.3334 
0.1754 - 0.3293 
0.2310 - 0.3255 
0.2843 - 0.3162 
0.3345 - 0.3072 
0.3812 - 0.2965 

- 
6* 

0.1414 
0.1425 
0.1443 
0.1469 
0.1501 
0.1541 
0.1588 

TABLE 2 

Finite-difference results - 
+ I ( %  0) 91(8, 0) a* 
0.0585 - 0.3105 0.1373 
0.1178 -0.3309 0.1422 
0.1753 - 0.3282 0.1442 
0.2310 - 0.3229 0.1469 
0.2844 - 0.3159 0.1503 
0.3349 - 0.3075 0.1546 
0.3822 - 0.2977 0.1598 

difference computations the two solutions agree very well. As s increases more, 
as before, the finite-difference solutions begin to disagree slightly with the series 
solution; however, this is due to the limited range of applicability of two terms of 
the series solution. Figures 15-17 show plots which compare the results of the 
series solution with the finite-difference solution. 

( b )  Second-order solutions for  the sphere. Figures 18 and 19 show the second- 
order results for the shear and heat transfer, respectively, for the sphere. The 
relations needed in equations (3.1)-(3.3) for computing the second-order effect of 
displacement thickness are 

(sl - s) = - eCl sin (s), 

(nl - n)  = - e[& -t Cl{l - cos (s))]. 

(3.12) 
(3.13) 
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These were obtained in the same manner as the case for flow past a paraboloid 
by shifting and expanding the sphere to fit the body given by the original body 
plus displacement thickness. (See the parabola example for the definition of 
and I&.) The accuracy of this fit is shown in figure 17. The fit is good up to about 
8 = 0.9 but is poor thereafter. This will affect the results for the second-order 
effect of displacement thickness in figures 18 and 19 for s > 0.9. 

8 

FIGURE 18. Second-order shear on a sphere at M ,  = 10.0, y = z ,  b0 = 0.6. 
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FIGURE 19. Second-order heat transfer on a sphere at M ,  = 10.0, y = p, 6 ,  = 0.6. 

One interesting aspect for flow past the sphere is the behaviour of the second- 
order terms far downstream. It is well known that first-order boundary-layer 
theory is not valid in the reversed flow region after separation. As in other 
perturbation problems, one expects then that in approaching this region where 
the expansion is not valid, the solution of the second-order boundary-layer 
equations will indicate this invalidity. The computations here have not been 
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carried as near separation as one would hope for in examining this point; however, 
the effect of longitudinal curvature, for example on the shear in figure 18, seems 
to indicate that this effect is becoming very large as separation is approached. In  
order to examine another quantity of interest near separation, we have plotted 
vl and v2 (first- and second-order velocity components normal to the body 
surface) at a representative value of N = 1.3722 in figure 20. This figure clearly 
indicates that the v2 component due to longitudinal curvature is becoming very 
large near separation. The other second-order terms do not demonstrate as drastic 
a behaviour near separation as far as can be determined from the numerical 
results. This indicates that this v2 component near separation is no longer a 
second-order quantity and therefore that the boundary-layer expansion (equa- 
tions (2.6a-f)) is not valid in the region of separation. This is what one would 
expect; however, this has not been exhibited in this manner until now. 
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FIGURE 20. First- and second-order normal velocity components at N = 1.3722 
on a sphere at M ,  = 10.0, y = Q, b, = 0.6. 

3.6. Comparison with other theories and experiments 
Kinslow & Potter (1962) have performed drag experiments on spheres for high 
Mach number flows at low Reynolds numbers.? These results are presented by 
them for a variety of free-stream and wall conditions. The drag on the spheres is 
made up of two parts, one part due to the pressure and another part due to the 
shear at the surface of the sphere. In  terms of a drag coefficient this can be 

C, = 4 p(s,O)rcossds+4 ?(s,O)rsinsds, (3.14) 

(3.15) 

expressed as 

where 
is the drag coefficient and D is the total drag. 

about 1 to 6000. 

/On 
C, = D/Bn-a*2pz ‘UZ2 

l o =  
? The range of the values of the Reynolds number Re, in their experiments was from 
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In  the boundary-layer region prior to separation, p(s,O) and ?(s,O) can be 

(3.16) 

(3.17) 

At high free-stream Mach numbers the contribution to the drag due to back 
pressure on the spheres should be small and will therefore be neglected. The 
contribution to drag due to shear in the region beyond separation should also be 
small and will also be neglected. Doing this we can get a good approximation to 
the sphere drag using only boundary-layer theory. 

Kinslow & Potter (1962) have fitted curves to their results to include terms of 
order e2 in the drag coefficient. It is possible to compute from equation (3.14) 
the contribution to drag due to shear to order @from equation (3.17); however, 
we cannot compute the pressure part to that order since p,(s, 0 )  is not known in 
equation (3.16) and would involve solving the outer flow problem to third-order. 
This would prove difficult since viscous terms in the outer flow enter in the third- 
order terms, and it is not possible to approximate the flow by a shifted, expanded 
body, as was done in the second-order case. For this reason we are able to 
compare only the sphere drag to order E with Kinslow & Potter (1962). 

For particular cases we take spheres a t  free-stream Mach number 10 with wall 
to stagnation-point temperature ratios b, of 0.2 and 0.6. The quantity pl(s ,  0 )  is 
obtained from the numerical results provided by Lomax. p,(s, 0 )  is given by Van 
Dyke (1962u), equation (2.46), as 

expressed as (see equations ( 2 . 6 ~ )  and (2.28)) 

Pb, 0 )  = Pl(S, 0) + q?+4(s, 0 )  + @p&, 0 )  + - - .> 
qs, 0) = e?,(s, 0) + S2T2(S ,  0)  + .. .. 

P~(s ,  0)  = K {Ri(s, 0 )  Uf(s, 0 )  - P ~ U ? )  dN + f ' 2 ( ~ ,  01, (3.18) 

where P2(s, 0 )  is computed in the same manner as q ( s ,  0) ,  etc., in equations (3.1)- 
(3.3) by shifting and expanding the sphere to fit the body plus displacement 
thickness. The integral on the right-hand side of equation (3.18) is evaluated 
numerically. 

The sphere-drag computation is carried out numerically by using Simpson's 
rule on equation (3.14). The integrands appearing in equation (3.14) are obtained 
from the finite-difference solution. For the case of wall to stagnation-point 
temperature ratio b, = 0.2, the results are 

CD = 0-89+ 1 - 7 ~ ,  (3.19) 

and, for b, = 0.6, CD = 0.89 + 2-36. (3.20) 

Converting E to the Reynolds number based on conditions behind the shock used 
by Kinslow & Potter (1962), we obtain 

CD = 0.89 + 2*8/Re$ (3.21) 

CD = 0.89 + 3*8/Re$ (3.22) 

/om 

for b, = 0.2, and 
for b, = 0.6. Re, is a Reynolds number defined as 

Re, = U:p: D*/,u,*, (3.23) 

where U:, p,* and p: are the velocity, density and viscosity, respectively, behind 
the shock, and D* is the body nose diameter. 
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Using this definition of Re,, the definition of 8, and some thermodynamic 
relations, we find that 

(3.24) 

The first result for b, = 0.2 compares favourably with the value of 
C, = 0.92 + 2*1/Ret (3.25) 

obtained by Kinslow & Potter (1962) for their case of b, = 0.15. The slightly 
larger coefficient which we obtained in the second term is due, a t  least in part, 
to the colder wall in the Kinslow & Potter experiments. It is not possible to 
compare the case of b, = 0.6 with any of the experimental results of Kinslow & 
Potter (1962); however, an examination of their results does show that it is at 
least the right order of magnitude. t 

Cheng (1963) has developed a method for computing the viscous flow past 
blunt bodies in hypersonic flow. He has computed several examples, one of 
which is the case of flow past a paraboloid with wall to stagnation-point tempera- 
ture ratio b, = $. If the results for heat transfer and skin friction of this case are 
compared with the case computed here for b, = 0.2 (see figures 9 and lo), it  is 
found that the agreement between the two methods is good for e small if one 
considers only first-order boundary-layer theory. (This corresponds to large 
values of K2 in Cheng's method.) If one adds the second-order contributions 
from figures 19 and 20, then the comparison is not as good. This is understandable 
since, as mentioned in 3 2, Cheng has not included most of the second-order effects 
in his analysis. 

This research was supported by the Air Force Office of Scientific Research, 
Office of Aerospace Research under Grants AF-AFOSR-62-242 and AF-AFOSR- 
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